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Abstract 

This paper proposes a higher order scheme in a compact 3×3 stencil in 

fusion with one sided formula for solving 2D unsteady Lid driven cavity 

flow at moderate Reynolds Number. This problem is a typical example 

for incompressible viscous flows in a constricted domain. The developed 

implicit scheme is temporally first order, spatially fourth order and 

requires a transformation from physical to computational domain. The 

scheme is capable of establishing results supporting the characteristics of 

the counter rotating vortices and bounded shear layers on the wall. The 

numerical data is compared with the established data of elsewhere 

studies. Detailed comparison data obtained by the scheme is presented.  
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1.0 Introduction 

Partial differential equations which are elliptic in nature plays a major 

role in the field of incompressible fluid flow problems. The governing 

equations in the stream function - vorticity formulation are more 

convenient and are solved using higher order compact schemes, spectral 

collocation methods, pseudo spectral methods etc.  

High order accuracy with compact grids attracted many researchers and a 

few well known finite difference schemes are contributed by S Abarbanel 

and A Kumar [1], T Y Hou and B R Wetton [2], and Z F Tian [3]. 

Compact schemes based on nine point stencil are developed by U Ghia et 

al. [4], J C Kalita et al. [5], W F Spotz and G F Carey [6]. M  Li et al. [7] 

introduced a scheme called genuine compactness where the stream 

function equation is used to get a compact scheme for vorticity equation 

in 3 × 3 molecule. In the recent years compact schemes for Navier-Stokes 

equation in body fitted coordinates are popular. YVSS Sanyasiraju and V 

Manjula [8] proposed a higher order semi compact scheme which is an 

extended idea of E Weinen and J G Liu [9]. Compact schemes in 

curvilinear systems reduces the algebraic complexity but also serves the 

goal of accuracy and stability. In the present study an attempt is made to 
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use the nice features of one sided differences in the derivation of higher 

compact scheme for 2D driven cavity flow problem. The compactness of 

every term involving stream function and vorticity is reserved and few 

terms involving nodes adjacent to the boundary of computational domain 

are calculated using one sided differences. The advantage of this scheme 

is that the extra nodal points are completely avoided in the calculation of 

vorticity. 

2.0 Basic Governing Equations 

Consider the flow of an unsteady isothermal incompressible fluid in the 

region                         with Γ as its boundary. In this 
region R the flow is governed by the equations (1) – (2). 

Continuity equation: 

                                                                                      (1) 

Momentum equation: 

                 
 

  
                                                (2) 

Here             where           are the velocities along x and y axis 

respectively,    is the pressure and the non-dimensionless parameter is 

the Reynolds number      
  

 
 where   is the characteristic velocity,   

is the characteristic length and   is the kinematic viscosity. The stream 

function - vorticity formulation of the governing equations in the absence 

of pressure are: 
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  represents stream function,        represents vorticity. The 

relation between the velocities and stream function is expressed as 

   
  

   
      

  

   
                                      (5) 

Equation (3) is a Poisson equation for stream function and equation (4) is 

a parabolic-type vorticity transport equation. To obtain appropriate body 

fitted coordinates for the governing equations the Cartesian system (x, y) 

is converted to curvilinear system (ζ, η) in a manner that they satisfy the 

Laplace equations                

The governing equations in the transformed body fitted coordinates (ζ, η) 

plane is given by equations (6) to (11). 
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where the contravariant components of velocity in the transformed plane 

are as follows: 
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3.0 Discretisation of Governing equations 

The higher order compact scheme for stream function and vorticity is 

obtained using the operator defined for Poisson equations J C Strikwerda 

[10]. The discretized equations are 
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The system of equations (12) and (13) leads to a compact scheme since 

the metric coefficient “m” vanishes with the choice of orthogonal 

transformation. The main focus is to discretise the last term in equation 

(13) which needs extra nodes as it involves third order derivatives. The 

third order derivatives of stream function and vorticity are expressed 

using one sided formula only at the nodes adjacent to the four boundaries 

of the computational domain, consequently the compactness is preserved. 

The one sided difference formula for third order derivatives are derived 

using Lagrange’s interpolation formula A K Singh and G R Thorpe [11]. 

The system of equations is solved using outer inner algorithm and point 

SOR method. 

4.0 Driven Cavity Problem 

 

Fig. 1. Physical configuration 

The two dimensional lid-driven cavity is a benchmark problem used to 

validate numerical codes of the 2D Navier-Stokes equations (Fig. 1). 

Consider a cavity within a square (0,1) × (0,1). Due to the simple 

geometry the computational domain is under the region (0,1) × (0,1). 

There are three stationary walls and the top wall moves from left to right 

and induce the fluid to move. Hence the velocities on the stationary walls 

are u = v = 0, and the velocity on the top wall is u = 1,v = 0. The 

boundary conditions for vorticity is evaluated using Jenson’s Formula 

[8]. Numerical computations are performed using uniform grids of size 
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81 × 81 and 101 × 101 with time step of 0.001 for Re = 1000. Fig. 2 

depicts the stream line evolution of Re = 1000 at different time levels. 

Fig. 2 shows clearly that the scheme can capture the shear layers of 

vortex contours in the left and right bottom of the cavity. Fig. 3 describes 

the vorticity values on the top wall at Re = 1000. The present result 

shows a very good comparison with the benchmark result of [4]. The 

steady state vorticity on the walls other than the top boundary is 

displayed in Fig. 4. 

 

t = 5                                                          t = 20 

Fig. 2. Evolution of streamlines at different time levels for Re = 1000 

 

Fig. 3.Vorticity values on the moving wall boundary at Re = 1000 
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Fig. 4. Steady-state vorticity on the Bottom, Left, Right walls at Re = 1000 

5.0 Conclusion 

In this study a fourth order compact scheme with one sided difference for 

a few terms was introduced in the body fitted coordinate system of 

incompressible Navier-Stokes equations. The results of test case 

exhibited reliability of the scheme to obtain the solution. The major 

advantage is that the computation of ghost points are completely avoided. 

All the simulations were performed with fewer grids of size (101 × 101). 

This evidences that the scheme is efficient for generating appropriate 

solutions. 
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