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Abstract 

Automobile safety systems are ever evolving technologies that rely on 

multiple domains to achieve their goals. One of the most used safety 

systemsin commercial vehicles is collision avoidance system, which 

works on Time-to-Collision (TTC) estimation. OpenCV is the core 

library used to develop this system, the image onto YOLOV3 pre-trained 

neural net to detect and recognize object in the frame and tag them with 

bounding boxes. Data fusion was done on camera and LIDAR data to 

obtain LIDAR TTC of the vehicle on the ego lane and cluster the point 

cloud on bounding box. In addition, as for computation camera TTC, key 

point descriptors using Akaze and FLANN were adopted to match them 

between current and previous frame and hence to obtain ratios of their 

distances. TTC was computed based on both Lidar and monocular 

camera in real time and thus increasing the reliance on TTC estimation. 

The application was tested on multiple KITTI dataset and TTC 

estimation was done by using different sensors. Both the sensors were 

found to be reliable in different scenario, while LIDAR emerged to be 

better performer overall. 
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1.0  Introduction 

One of the most crucial safety system functionality is time to collision 

estimation, which is used for Collision Avoidance System (CAS), 

assisted braking, lane changing assistance system, etc. Time-To-Collision 

(TTC) has proven to be a valuable method for determining the 

importance of crucial and normal behaviour and gauging the severity of 

traffic accidents [1]. Many vehicles are not equipped with fancy sensors 

that are present in autonomous vehicles; most vehicles are equipped with 

monocular camera like dash camera in the front [2]. Camera is one of the 
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most useful sensors which provide RGB image that can be used to detect 

and identify the object using YOLOV3 algorithm and estimate TTC 

using Open-CV key point descriptors(KPD) between two consecutive 

frames. However, camera alone cannot reliably estimate TTC, since it is 

limited to short distance and hence NVIDIA Jetson Nano 2 GB which is 

a powerful edge-computing device is used. This device is a powerful 

computer packed in a small for AI, IOT and embedded applications. It 

has the performance and capability to run workload in a fast and easy 

way. With the help of powerful tools and efficient detecting algorithms, a 

stand-alone working model is developed.  

For obtaining a reliable TTC a second sensor is needed. Lidar as a second 

sensor, which projects point clouds to the scene to obtain depth 

measurement from a point is used [3]. Lidar can track TTC estimation of 

vehicle in a lane for longer distance than camera. Hence camera based 

calculated TTC estimation as a benchmark to Lidar based TTC 

estimation was adopted.  

1.1 Computer Vision and Autonomous Vehicles 

Computer vision focuses on recreating some of the complexity of the 

human visual system so that computers can recognize and analyze items 

in images and videos [4]. 

Computer vision researchers sought to create algorithms for such visual 

perception tasks such as: 

(i) Recognize certain object in the image: object recognition, 

(ii) Object detection to find instances of a particular class of semantic 

objects, and  

(iii) Scene understanding to divide an image into useful chunks for 

analysis [5]. Computer vision is all about pattern recognition. 

Consequently, a large number of tagged pictures are sent to a computer 

and then subjected to different software approaches or algorithms that 

enable the computer to look for patterns in all the parts that relate to 

those labels as a way of teaching it to interpret visual data. 

The foundation of autonomous vehicle technology is computer vision. In 

order to safely navigate the road, cars use object detection and 

identification algorithms with combination of sophisticated cameras and 

sensors to evaluate their surroundings in real time and identify objects 

like people, traffic signs, barriers, and other vehicles [6]. As per the SAE 

Levels of Automation scale, there are five levels of automation for 

autonomous cars [7]:  
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The foundation of autonomous vehicle technology is computer vision. In 

order to safely navigate the road, cars use object detection and 

identification algorithms with combination of sophisticated cameras and 

sensors to evaluate their surroundings in real time and identify objects 

like people, traffic signs, barriers, and other vehicles [6]. As per the SAE 

Levels of Automation scale, there are five levels of automation for 

autonomous cars [7]:  

Level 0: Automated alerts and momentary assistance, such as lane 

departure warnings and emergency braking, are at Level 0. 

Level 1: The car has a single autonomous driving aid system that can 

steer or accelerate (cruise control). 

Level 2: This refers to ADAS, or advanced driver assistance systems. 

The car has steering and acceleration/deceleration controls. Because a 

human is seated in the driver’s seat and has the ability to take over the 

vehicle at any time, this automation falls short of self-driving in this 

instance. Level two systems include Cadillac (General Motors) Super 

Cruise and Tesla Autopilot. 

Levels 3 and 4: Under particular circumstances, these features allow the 

vehicles to function on their own. Level 3 features can call for the driver 

to take over steering. 

Level 5: These characteristics are identical to Level 4 features, with the 

exception that they can operate in any kind of road situation. 

1.2 Open CV 

Open CV is a noteworthy open library for computer vision, machine 

learning, and image processing. Presently, it contributes significantly to 

real-time operation, which is essential in contemporary systems. It may 

be used to search for people, objects, and perhaps even human 

handwriting in images and videos. With the help of integrated libraries 

like NumPy, Python and other high level programming languages the 

OpenCV array structure can be used for analysis [8]. To recognize visual 

patterns and their numerous aspects, vector space is employed and 

mathematical operations on these features are performed. 

1.3 YOLO V3 

You only look once (YOLO) is a state-of-the-art, real-time object 

detection system. On a Pascal Titan X, it processes pictures at a speed of 

30 frames per second, and on COCO test-dev, it has a mAP of 57.9. 

YOLOv3 is extremely fast and accurate (Fig 1 and 2). YOLOv3 is nearly 

four times quicker than Focal Loss in mAP measured at.5 IOU, but they 

are equivalent [9]. Furthermore, a balance between accuracy and speed 
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can be achieved by simply changing the size of the model; no retraining 

is required. 

 

                                Fig.1. YOLO V3 performance on COCO dataset 

1.4 Sensor fusion 

Sensor fusion is the process of combining data from various sources, 

such as sensors, to produce information that is less uncertain than it 

would be if the sources were used separately [10]. The term 

“uncertainty reduction” in this context might mean either being more 

accurate, thorough, or dependable, or it can mean the outcome of a fresh 

viewpoint, like stereoscopic vision (calculation of depth information by 

combining two-dimensional images from two cameras at slightly 

different viewpoints) [11]. 

1) Lidar-Camera data fusion 

For object detection, LiDAR and camera fusion techniques with varying 

levels of data fusion have been introduced. The fusion-technique 

establishes a connection between the point clouds from LiDAR and the 

object identified by a camera to expedite processing. This is possible 

because sensor fusion increases robustness and detection accuracy while 

making up for the shortcomings of the individual sensors [12]. 
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                Fig. 2. YOLO V3 performance on COCO dataset 

Fusing these two data can result in reliable TTC estimation [13]. For 

instance, a typical camera has a much higher resolution than LiDAR, 

but it has a smaller field of view and is less accurate at estimating 

distances to objects than LiDAR. When utilizing merely images, a 

camera is furthermore sensitive to changes in illumination and has 

advanced image processing, but LiDAR finds it difficult to classify 

objects and discriminate between colours in contrast to a camera. Data 

fusion, which combines sensor data from various sources, can be used 

to overcome the constraints of individual sensors and lower their 

ambiguity. 

1.5  AKAZE and FLANN 

AKAZE algorithm is the accelerated version of KAZE. As opposed to 

KAZE, the accelerated KAZE algorithm creates the non-linear scale-

space using a quicker technique known   

astheFastExplicitDiffusion(FED) [14].Tofindandcompare key points 

between two images, AKAZE local features are used. The key points on 

a pair of images with the given homography matrix were matched to 

find the inliers, and count them (i.e. matches that fit in the given 

homography). 

FLANN (Fig 3) was used to quickly find approximate neighbours in 

high-dimensional spaces. It includes a set of algorithms that were 

discovered to be the most effective for nearest neighbour searches as 

well as a system for automatically selecting the most effective algorithm 

and ideal parameters based on the dataset. Key point descriptors were 

compared and matched using the Euclidean distance utilizing traditional 

feature descriptors (SIFT, SURF, etc.) [15]. Histogram-based metrics 
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can be used as alternatives to the Euclidean distance since SIFT and 

SURF descriptors provide the histogram of an oriented gradient in a 

neighbourhood. 

 

                           Fig. 3.   Flann example 

1.6 Safety critical system in automobile 

In automobile industry safety critical systems are required to follow 

many sets of international safety standards [16], such as estimating TTC 

for developing further safety systems like Intelligent Driver Assistant 

System (IDAS) or developing a diagnostic system for detecting 

malfunctioning component of the vehicle [17], in turn avoiding recurring 

malfunctions and improving traffic safety. There are two waves of safety 

systems, namely, First wave of safety systems and Second wave of safety 

systems. 

First wave of safety systems: Modern passenger automobiles and 

commercial vehicles are generally equipped with the first wave of active 

safety systems. a) Antilock Braking System (ABS):One of the oldest 

safety features used in an automobile. It is essentially an active protection 

mechanism installed in the majority of autos that prevent the wheels from 

locking up while braking hard [18], b) Electronic stability control (ESC): 

ESC was introduced in 1998. It aids avoiding skidding and the driver 

losing control of the vehicle while turning  a  corner.  The brakes could 

be automatically applied using ESC technology to assist in steering the 

vehicle in the appropriate direction. A study was conducted to see the 

effect of ESC, and ESC was found to have a greater impact on single-

vehicle crashes than multiple-vehicle crashes and crashes with fatal 

injuries than less severe crashes. [19]. 

Second wave of active safety systems: It was introduced using more 

advanced technologies such as stereo cameras, radar, GPS and Lidar 

[20]. It includes: 

a) Lane keeping assistance (LKA):To reduce the effort of the driver 

without lowering the driving motivation, a novel idea of cooperative 

driving between the driver and the assistance system is developed. The 
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system has received approval from the Japanese Ministry of Land, 

Infrastructure, and Transport to be deployed on expressways in Japan as 

a basic driver assistance system [21]. 

b) Intelligent speed assistance (ISA):ISA systems actively deter drivers 

from going over the posted speed limit using GPS-linked speed limit 

databases and road sign recognition cameras. Although this safety feature 

is still in trials due to its technical issue, it can be one of the most game 

changing safety features to save life. 

1.7 Time-To-Collision 

TTC is proven as a traffic conflict technique as an indicator for gauging 

the seriousness of traffic accidents and differentiating between 

problematic and typical behavior. The research findings support the 

direct use of TTC as a cue for traffic decision-making [1]. It can be 

implemented using only a camera or even with advanced sensors such as 

LIDAR and radar. TTC was further used to implement CAS,IDAS, lane 

changing assistance andABS. TTC and CAS are not only used in land 

vehicles but also is an application for unmanned aerial vehicles such as 

drones [22]. 

TTC with Camera:The ratio of the body’s image size to its derivative 

time can be used to calculate TTC for a body moving in relation to the 

camera. The main objective is to compute this ratio using local scale 

change and motion data gathered from the identification and monitoring 

the feature points [23]. TTC from camera has its own limitation of less 

visibility like fog and it cannot calculate TTC beyond a short distance 

[24]. 

TTC with Lidar:Computing TTC with Lidar requires fusing of LIDAR 

and camera sensor data using object detection and a lean implementation 

approach, a 3D multi-target tracking method with a real-time. LIDAR 

point clouds were mapped on to the image or frame from the camera in 

real time, and distance was measured from ego lane vehicle, which is in 

front of the car to estimate TTC.  Fused Lidar based TTC is proved to be 

more effective than camera TTC alone [25]. TTC can be estimated to a 

further distance that a camera cannot when there is less visibility. 

1.8 Sensor Data Fusion 

Data fusion is an emerging domain, which works on fusion of two 

different types of data, which may be unreliable into one type of reliable 

data. Data fusion is usually implemented using algorithms like use of 

Kalman filters, neural nets, Bayesian networks, KNN algorithm and 

fuzzy logic [21]. For navigation and control of an autonomous vehicle, 

multi-sensor data fusion was employed. Advanced sensors were 
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employed to collect information from structured environments, including 

GPS, a digital compass, a laser scanner, and an ultrasonic sensor [22]. 

This research deals with combining camera and LIDAR data with 

different data generation. Therefore, an Asynchronous Data Fusion 

Algorithm was employed by incorporating a weight vector to the data 

source to increase the accuracy of the model[23]. This fused data was 

usedtocalculateLIDARbasedTTC. 

1.9 KITTI dataset 

The KITTI dataset was collected from a moving platform while 

travelling through and around Karlsruhe, Germany. It i s  made up of 

laser scans, digital images, extremely accurate GPS data, and IMU 

accelerations from a GPS/IMU system operating together. The main goal 

of this collection was to enhance robotic and computer vision systems for 

autonomous cars[26]. 

2.0 Methodology 

Two main sensors namely, monocular camera and Lidar were used to 

capture synchronized data. The camera captures RGB images and each 

camera frame was made to run through YOLOV3 algorithm for 

recognizing the objects in the image and tag them with bounding boxes. 

 

   Fig. 4. Workflow Diagram 
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Fig. 4 represents the workflow used to calculate TTC from both the 

sensors. For calculating image based TTC, the image was first converted 

to grayscale. The data was processed to obtain key point descriptors 

using AKAZE. First, the image frame was passed through YOLOV3 

object detection algorithm to identify objects or vehicles in frame and tag 

all of them with bounding boxes (BB). The image frame was tagged with 

BB passed through AKAZE (key point detection algorithm), for 

detecting key points in the ego lane BB. Subsequently, the frame was 

passed through FLANN for key point descriptor matching between 

current and previous frame. The distance ratio of the KPD between two 

frames was used to compute image based TTC. 

Lidar TTC computation was obtained from both image and LIDAR point 

clouds. Lidar data and image were fused to overlay point clouds on to the 

image. Frame was used to detect objects and tag them with BB using 

YOLOV3. The detected image was focused on the ego lane-bounding 

box to cluster and crop LIDAR point clouds. The ego lane BB was 

obtained and was then used for cropping and clustering point clouds on 

to the ego lane BB. These LIDAR points were used to calculate distance 

from the vehicle, in return to calculate Lidar TTC computation. 

3.0 Experimental Details 

KITTI dataset is one of the most popular datasets for robotic systems and 

autonomous driving. It is composed of many hours worth of traffic 

events recorded using  a variety of sensor modalities, including high-

resolution RGB, grayscale stereo cameras, and 3D laser scanners. RGB 

image from monocular camera and LIDAR data was used for calculating 

TTC and the same was observed in different scenarios. The difference 

between the two sensors was used for calculating TTC. 

TTC was calculated using equation of uniform velocity, in which the 

source vehicle(vehicle capturing the data) and the ego Lane 

Vehicle(vehicle that is in the same lane or in front of source vehicle) 

were used. If TTC is estimated zero means that both source and ego lane 

vehicle are  travelling with same velocity. If TTC is positive, it implies 

that the ego lane vehicle velocity is greater than that of the source 

vehicle. Similarly, if TTC is positive, the velocity of the source vehicle is 

greater than that of the ego lane vehicle. 
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    Fig. 5. TTC from KITTI dataset 1 

In the first dataset both Lidar and camera performed similarly. This 

dataset was captured in heavy traffic scenario where the ego lane vehicle 

was close to the source vehicle. A spike in Lidar TTC is observed (Fig 5 

and Table 1). It is because the source vehicle is very close to the ego lane 

vehicle causing difficulty in clustering the LIDAR point and velocity of 

source and ego lane vehicle is nearly zero. 

 

 Fig. 6. TTC from KITTI dataset 2 

The second dataset provided more complicated results. However, it 

showed clear difference in the ability to calculate TTC of the two sensors 

RVJSTEAM 4,1(2023) 35



Ramakanthkumar P. et.al. Computation of TTC using Lidar and Monocular Camera Data for 

Automobiles 

(Fig 6). In this dataset both source vehicle and ego lane vehicle have 

varying velocity, which produces both positive and negative TTC. As 

observed in the previous dataset both sensors performed similarly when 

the vehicle is near to each other, but after certain distance camera is not 

able to track the key points to estimate TTC and hence resulted in a NaN 

value in case of the ego lane vehicle at certain distance from the source. 

However, Lidar was able to continue estimating TTC far beyond camera.  

 

Table 1. TTC for comparison for dataset 1 

 

4.0 Conclusion 

Safety critical systems of automobiles is facing challenges in 

maintaining price to safety benefit ratio. Advanced sensors such as 

stereo camera and LIDAR incur additional cost. Lidar based TTC was 

found to be more reliable than that of the camera based. While LIDAR 

TTC was able to estimate TTC beyond certain distance the Camera TTC 

showed limitations. Camera is very sensitive to light and can have 

further disadvantages. Also in rough weather, it is extremely difficult for 

these sensors to estimate a reliable TTC value, so computation of TTC 

using data fusion has higher accuracy in unconventional weather 

conditions such as rain ordust.Furthermore, a reliable TTC can be used 

to implement assisted braking system for vehicles, implementing self-

driving cars with better TTC estimation, intelligent driver assistance 

system and other applications for better navigation in harsh climatic 

conditions. 
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