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Abstract 

Stress intensity factors play a crucial role in predicting the behavior of 

cracks in engineering structures. Accurate determination of stress intensity 

factors is vital for assessing the structural integrity and fracture behavior 

of materials. This paper presents an evaluation of Mode I stress intensity 

factor for an edge crack utilizing the displacement extrapolation method. 

The field extrapolation technique was employed to calculate the stress 

intensity factor, which involved measuring the displacement of nodes at 

the crack tip. To validate the accuracy and reliability of the proposed 

approach, a comprehensive comparison with experimental results is 

performed. The displacement extrapolation approach was found to be in 

good accord with the experimental data. The effect of element size and 

mesh arrangement near the crack is discussed.  

Keywords: Displacement extrapolation method, Stress Intensity Factor 

(SIF), FEM, Fracture Toughness. 

1.0 Introduction 

The property of fracture toughness (KIC) describes material's capacity to 

resist crack propagation. The reliable estimation of Stress Intensity Factors 

(SIF) is an essential aspect of fracture mechanics, enabling the assessment 

of crack growth behavior and structural integrity [1, 2]. Mode I stress 

intensity factors specifically characterize the crack opening mode, which 

is commonly encountered in numerous engineering applications. Accurate 

determination of these factors aids in predicting crack propagation rates, 

estimating remaining life, and designing fatigue-resistant components. 

Conventionally, analytical, and numerical methods have been employed to 

calculate SIF [3, 4]. Analytical approaches, such as the Westergaard 

equation and Newman-Raju equation provides closed-form solutions for 

specific geometries. However, these methods often require simplifying 
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assumptions, limiting their applicability to complex crack configurations. 

On the other hand, numerical techniques such as the Finite Element 

Method (FEM), offer greater flexibility but demand significant 

computational effort, particularly for large-scale problems. 

The present crack configurations are three-dimensional ones. The use of 

plane stress/plane strain as a two-dimensional approximation to these 

cracked bodies is often unacceptable [2]. To analyze stress intensity 

components using multiple procedures and balance accuracy and 

computational efficiency, researchers have looked into a variety of 

approaches. Here are two types of estimating techniques: First, which 

employ field extrapolation near the crack tip and second, which uses 

energy release during crack propagation. Special post-processing 

techniques are required in the energy release method and in mixed mode 

situations, it is typically complex [5]. One of the field extrapolation 

methods is the displacement extrapolation method, which capitalizes on 

the displacement fields obtained from Finite Element Analysis (FEA). By 

extrapolating displacement data near the crack tip, this method enables the 

estimation of SIF without the need for complex analytical derivations or 

extensive computational resources. To adequately characterise the unique 

strain field near the crack tip, as recommended by Barsoum [6] an altered 

iso-parametric element is presented. The projected finite element model is 

made up of SINGULAR iso-parametric pentahedral solid elements at 

crack front [7]. 

This paper presents a comprehensive evaluation of the Mode I SIF for an 

edge crack using the displacement extrapolation method. The proposed 

technique leverages the displacement fields near the crack tip to calculate 

the SIF, providing an efficient and accurate alternative for engineering 

applications. The results from the displacement extrapolation methods are 

compared with experimental data to see how reliable they are. The 

displacement extrapolation method's dependability will be proven through 

comparison with experimental data, opening the door for a wider use in 

engineering practice. The influence of mesh arrangement and element size 

near crack on SIF obtained by the displacement method and numerical is 

presented. The findings of this study have the potential to enhance crack 

growth prediction models, improve structural design considerations, and 

ultimately enhance the safety and durability of engineering structures. 

2.0 Development of Finite Element Model  

In the displacement extrapolation method, the accuracy of SIF estimation 

relies on the proper selection of finite elements and the development of an 
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appropriate finite element model. The choice of elements and the 

construction of the model are crucial to ensure reliable results.  

 

                                 Fig.1. Quadratic order hexahedral solid element 

In 3D models, tetrahedral or hexahedral elements are commonly used. 

Tetrahedral elements, with their simplicity and ease of meshing, are 

frequently employed for general 3D crack problems. However, hexahedral 

elements offer superior accuracy and efficiency for crack modeling, 

especially when the crack plane is well-aligned with the mesh. For the 

displacement extrapolation method, the commonly used elements are 

typically those that can accurately capture the displacement fields near the 

crack tip. In many cases, singular elements, also known as crack-tip 

elements or enrichment elements are employed. Fig. 1 shows quadratic 

order hexahedral solid element of the Serendipity family.  

 

                                          Fig. 2. Singular pentahedral element 

The element has 20 nodes. Eight nodes are located at the vertices and the 

others are at mid-side points of the parent element which is a bi-unit cube. 

The HEXA20 element is widely used in practice and is implemented in 

every commercial FEM system. This element is employed as regular 

element. Pentahedral solid element of the serendipity family of quadratic 

order (15 nodes) is shown in Fig. 2. This is designed by further distorting 

the HEXA20 element. Specifically, it involves collapsing a face and 

constraining the nodes that are collocated to have identical degrees of 

freedom. This element is called PENTA15 and is also used as regular 
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element. The projected finite element model involves a very fine mesh of 

SINGULAR iso-parametric pentahedral solid elements (SPENTA15) 

along the surface crack front [8, 9]. A compatible mesh of regular elements 

namely iso-parametric pentahedral solid element (PENTA15) and iso-

parametric hexahedral solid element (HEXA20) are used to discretise the 

rest of the domain under consideration [10]. These elements are 

specifically designed to model the stress singularity that occurs at the crack 

tip. The most widely used singular element is the quarter-point element or 

quarter-point singular element, which is a higher-order element capable of 

accurately capturing stress gradients and displacements near the crack tip. 

In this work the finite element model was created using ANSYS program. 

However, in ANSYS the required singular element is not listed in the 

element library. Therefore, the pre-processing commands and user 

experience is essential for the concurrent creation of SPENTA 15 element 

mesh along any curved crack front. The element's shape functions are 

derived based on the serendipity concept, which allows for efficient and 

smooth interpolation of displacements within the element. It is important 

to note that the choice of elements and the refinement of the mesh near the 

crack tip are critical for accurate displacement extrapolation. Fine mesh 

refinement in the vicinity of the crack tip ensures that the displacement 

field is adequately captured, leading to reliable SIF estimation. 

3.0 Displacement Extrapolation Method 

The displacement extrapolation method leverages displacement data of 

nodes obtained from Finite Element Analysis (FEA) to estimate SIF. It is 

based on the assumption that the displacement field near the crack tip 

follows a power-law singularity. To obtain decent depiction at the crack 

front edge, Quarter-point iso-parametric elements are employed. Fig. 3 

depicts element arrangement and crack's progression on the x-axis. 

 

                         Fig. 3.  Progression of crack in x-direction 
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The asymptotic equation for bi-dimensional crack under in-plane loading 

displacement normal to the crack plane𝑣, is given by equation (1) [5]. 

𝑣 = 𝐾𝐼  
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where E is the young’s modulus, 𝑣 the Poisson's ratio, 𝜅 for plane stress 
(3 − 𝑣) / (1 + 𝑣) and for plain strain (3 − 4𝑣). Ai are parameters that 

depend on load and the specimen's geometry, while r and ϴ are the polar 

coordinates, as shown in Fig. 3. At fracture tip the normal displacement 

v(r=0) is zero, as prescribed to the symmetry of mode I. 

To improve the accuracy of the extrapolation, equation (1) only 

incorporates terms in r 1/2, r 3/2, r 5/2, etc. when the displacement 𝑣 is 

measured along the fracture faces (θ = ±π). At the upper face of crack for 

node A and node B of singular element by specialising equation (1) we 

have, 
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where 𝑙 is the element side TB's length. Equations (2) and (3) can be solved 

or 𝐾𝐼 and 𝐴1by ignoring higher order terms. The SIF value is thus: 

𝐾𝐼 =  
𝐸
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√
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               (4) 

Where E′ is the effective young’s modulus, which is defined as E/(1 – 𝑣 2 

) for plane strain and E for planar stress. If the higher terms (𝑙
3

2) ignored 

in equation (2), the quarter node displacement can be used to estimate 𝐾𝐼  

more easily.  
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Finally, an alternative estimation of 𝐾𝐼  may be produced by matching the 

term in r 1/2 of the displacement expansion along the top crack face with 

the equivalent term of the element interpolation function for𝑣(𝑟). 

The displacement field θ = π at the crack edge for a single six-node or 

eight-node iso-parametric element is a function of the nodal displacements 

𝑣𝐴 and𝑣𝐵, and is given by: 

𝑉(𝑟) = (4𝑣𝐴 − 𝑣𝐵)√
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By recognising terms with √𝑟 in equations (1) and (7) and by changing θ 

= π in equation (1) we get: 
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Now the SIF is, 
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The quarter point element's nodal displacements on the top side of the 

crack are used in Equations (4), (5), and (8) to calculate 𝐾𝐼  . Due to 

symmetry, a similar outcome would be achieved for the bottom face 

element. The performance of these three 𝐾𝐼  estimations is evaluated in the 

following section. 

4.0 Numerical Simulation of Fracture Toughness 

4.1 Methodology of the Numerical Simulation of Fracture Toughness 

The numerical research of fracture toughness was done by numerically 

simulating experimental tests according to the ASTM E 399 standard. Here 

is a brief overview of the methodology [11] 

Geometry and Mesh Preparation: Geometry of the specimen prepared as 

per ASTM E399.The most commonly used specimen geometries for 

fracture toughness testing are the standard Compact Tension (CT) and 

Single-Edge Notched Tension (SENT) specimens. Create a finite element 
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mesh that accurately represents the geometry of the specimen. The mesh 

should be refined near the crack tip to capture the stress gradients 

accurately. 

Material Properties: Material properties of the specimen, including elastic 

modulus, Poisson's ratio are defined. It is important to ensure that the 

material properties used in the simulation are representative of the actual 

material being tested. 

Loading Conditions: Appropriate loading conditions as per ASTM E399 

standard are applied. The most common loading condition for fracture 

toughness testing is a linearly increasing load applied to the specimen, 

resulting in crack propagation. 

Crack Growth Simulation: The crack was initiated by introducing a small 

initial crack or notch in the specimen geometry and loading conditions 

were defined to simulate crack growth. The appropriate fracture 

mechanics-based criteria, such as SIF (𝐾) or the J-integral were used to 

determine the crack growth behaviour. 

Analysis and Results: displacements, stress, and crack lengths, at specific 

intervals or load increments were monitored and recorded. The recorded 

data was analysed to calculate the critical SIF (KIC) or fracture toughness 

value, typically using established fracture mechanics equations or 

methods. Comparative study of calculated fracture toughness with the 

specified value was done to evaluate the specimen's fracture resistance and 

to determine if it meets the ASTM E399 standard criteria. 

Validation: The numerical simulation results were validated by comparing 

them with experimental data obtained from physical testing of the same 

specimen geometry and material and ensured that the simulated fracture 

toughness values are within an acceptable range of the experimental 

results, indicating the accuracy and reliability of the numerical model. 
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       Fig. 4. Principal Types of Force-Displacement (CMOD) Records 

For KQ determination, a load vs. crack mouth opening displacement 

(CMOD) graph must first be generated. By monitoring the movement of 

the notch edge during numerical modelling, the CMOD can be determined. 

The loads PQ and Pmax are determined using a built curve. Pmax is the load 

value at the curve's peak load point. The load at which the SIF reaches the 

KQ value is defined as PQ. The OA line is a tangent line to the linear part 

of the curve (Fig. 4), where O point is at the origin of the curve. Line OP5 

is a secant line with a 5% slope to the OA line and found by (P/v)5 = 

0.95(P/v)O. In the case of a Type I curve, PQ is found at the intersection 

point of the curve and the secant line. For Type II and Type III curves, the 

PQ load is found at the first vertex.  Knowing the PQ load, KQ can be 

analytically calculated by using the following equation for a standard C(T) 

specimen. 
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Where PQ is the load at which KQ is found, B is the thickness of the 

specimen, W is the width of the specimen, a is the length of the crack. Kmax 
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is calculated using the same Equations (9) and (10) as for the KQ 

calculation, only replacing load PQ with load Pmax. 

4.2 Numerical Model 

The methodologies for determining 𝐾𝐼  that were discussed in the 

preceding section are now applied to compact tension specimens (CTS). 

ANSYS was used to simulate mode 1 fracture propagation and assess the 

SIF along the crack front. The CT specimen's dimensions were measured 

according to ASTM standards, as indicated in Fig. 5. The impact of the 

number of elements and their sizes was investigated. 

 

                               Fig. 5. Compact testing specimen according to the ASTM E 399 standard [11] 

Iso-parametric SPENTA15 elements were used to discretise near the crack 

tip for investigation of singularity stress near crack tip, as illustrated in Fig. 

6, and the remaining region was discretised using second order 20 noded 

hexahedron elements. 

 

        Fig. 6. SINGULAR element around the crack tip 
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The instructions mentioned above were then applied to the finite element 

model to simulate fracture toughness numerically. Since the specimen is 

symmetric, just half of it was generated to save time and effort in 

modelling and computation work. For all simulation conditions, a crack 

length of 1.8 mm was chosen. The analysis was done for two different 

loadings of PQ 42.4 KN and Pmax 82.7 KN. In a symmetric condition, 

displacement constraints were implemented. At the loading co-ordinate, a 

3DMASS element was formed. The CT model's opening mode was 

ensured by the boundary and loading parameters, as illustrated in Fig. 7. 

The elements' compatibility conditions were ensured. The material of 

choice for the analysis was P91steel, E= 214 GPa and poisons ratio is 0.3.  

 

Fig. 7. Mesh, Loading and boundary conditions. 

The crack was given an appropriate local coordinate system. The SIF was 

calculated in plane stress condition and local coordinate system. For the 

analysis of SIF, a Preconditioned Conjugate Gradient (PCG) solver was 

used. The element matrix formulation is the first step in this solver. PCG 

solvers collect the entire global stiffness matrix and iterate to convergence 

to calculate the DOF solution, instead of factoring the global matrix. 

The impact of the number of elements and element size on the SIF was 

investigated using many mesh patterns around the fracture tip. As shown 

in Fig.8 SPENTA15 elements were used for configurations E-1 to E-3.  

Each of this number of elements around the crack tip varies. In 

configuration E-1, four elements (If the symmetry is taken into account, 

the total number is eight.) were meshed around the crack tip, eight 

(Sixteen) in E-2 and twelve (twenty-four) in E-3. The rest of the specimen 

was mesh with 15 node pentahedron and 20 node hexahedron elements. 
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Fig. 8. Crack-tip modeling by configuration of number of elements 

As shown in Fig. 9, varying size of elements were used to configure C-1 

to C-3. C-1 with element size of 0.4, C-2 with element size of 0.6 and C-3 

with element size of 0.8. 

 

Fig. 9. Crack-tip modeling by configuration of size of elements 

5.0 Results and Discussion 

For varied loads, the SIF was calculated using displacement extrapolation 

method and FEM at the crack front. The displacement elements u, v, and 

w were extracted using ANSYS along the x, y, and z axes, which were 

then included in the equation. The experimental results were compared to 

the outcomes of both methods. [12]. 
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                        Fig. 10. Stressed model 

 

  

Fig. 11. Critical stress region and Plastic zone near the crack tip 

The stress state and plastic zone size at the fracture tip are depicted in Fig. 

10 and Fig. 11. It's worth noting that 𝐾𝐼 accuracy is excellent for all setups 

under 5%. In this problem, the most accurate answers were obtained using 

the simplest estimating method, which is based just on the quarter point's 

displacement. 

5.1 Influence of element size 

Table 1 and Table 2 show the influence of the size of the elements on 𝐾𝐼 

for 42.4 KN and 82.7 KN, respectively. The element size to crack length 

ratio ranged from 0.2 to 0.4. The three approaches examined in this 

research appear to converge to the experimental values adequately [12]. 

Up to a particular element size, a local mesh refinement in the fracture tip 

RVJSTEAM 4,1(2023) 110



Syed Jabiulla et.al., Computational Modeling and Analysis of Stress Intensity Factor for Opening Mode Crack 

Propagation using Displacement Extrapolation Method 

zone can enhance KI estimation. A finer mesh yields worse outcomes 

beyond this stage. This is the most important takeaway from the study. 

Table 1. SIF for different element size at crack tip for PQ 42.4KN 

Configuration 
FEM 𝑲𝑰, 

MPa √m 

Displacement 

extrapolation 

method, 𝑲𝑰, 

MPa √m 

Experimental, 

 𝑲𝑰, MPa √m 

[12] 

C-1 72.504 72.77 

75.1 C-2 72.63 72.97 

C-3 72.64 73.04 

 

Table 2. SIF for different element size at crack tip for Pmax 82.7KN 

Configuration 
FEM 𝑲𝑰, 

MPa √m 

Displacement 

extrapolation 

method, 𝑲𝑰, 

MPa √m 

Experimental,  

𝑲𝑰, MPa √m 

[12] 

C-1 141.41 141.94 

146.4 C-2 141.67 142.33 

C-3 141.67 142.46 

 

5.2 Influence of number of elements (Angular discretization) 

The angular discretization around the fracture tip has the most impact on 

𝐾𝐼 estimation. Table 3 and Table 4 show the results for 42.4 KN and 82.7 

KN, respectively. A bad meshing with least number of singular elements, 

two/three elements (four/six if symmetry is taken into account) can result 

in an erroneous 𝐾𝐼 value. 4 (C-1), 8 (C-2) and 12 (C-3) element 

configurations were used for analysis. SPENTA 15 elements were used to 

create all crack tip meshes. The results are shown in Tables 3 and Table 4, 

which compare 𝐾𝐼 values to experimental results for all setups. Figure 12 

depicts the element arrangement in ANSYS in terms of configuration. It's 

worth noting that a mesh refinement with a bad angular discretization yield 

results that appear to converge to an incorrect estimate of 𝐾𝐼 .  
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Fig. 12. Angular discretization at crack tip 

Table 3. Stress intensity factor for different number of elements at crack tip for PQ 42.4KN 

Configuration 
FEM 𝑲𝑰, 

MPa √m 

Displacement 

extrapolation 

method, 𝑲𝑰, 

MPa √m 

Experimental,  

𝑲𝑰, MPa √m 

[12] 

E-1 71.85 73.02 

75.1 E-2 72.63 72.04 

E-3 72.64 72.94 

 

Table 4. Stress intensity factor for different number of elements at crack tip for Pmax 82.7KN 

Configuration 
FEM 𝑲𝑰, 

MPa √m 

Displacement 

extrapolation 

method, 𝑲𝑰, 

MPa √m 

Experimental, 

𝑲𝑰, MPa √m 

[12] 

E-1 140.15 142.42 

146.4 E-2 141.67 142.46 

E-3 141.673 142.26 
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Fig. 13. Variation of SIF along the crack edge. 

The stress intensity factor solution is shown in Fig. 13 along the crack 

edge. The SIF difference at the crack tip edge will follow the similar 

pattern for all configurations. The SIFs described here are regarded to be 

valid because they are based on comparisons with experimental data. The 

difference in SIF with respect to thickness of specimen is significantly 

variable. The insufficiency of 2D analysis is demonstrated by the 

fluctuation in the thickness of the SIFs as seen in the graph. 

6.0 Conclusion 

The serendipity family’s Iso-parametric solid elements, pentahedral and 

hexahedral in form and quadratic in order are efficiently employed for 

edge-cracked component and structures are simulated using finite element 

in ANSYS, a general-purpose FEA application.  The pre-processing 

command in ANSYS allows create specified size and number of singular 

iso-parametric pentahedral solid element (SPENTA15) the remaining of 

the volume under consideration can be discretise using a standard element 

of HEXA20 and PENTA15.   

Experimental results were compared to the SIFs calculated using the 

displacement extrapolation method and finite element models developed 

with ANSYS. The results were discovered to be in perfect accord with the 

experimental results. When angular discretization (number of elements) 

around the fracture tip is done well, even for coarse meshes, the 

displacement extrapolation method can yield remarkably accurate 

predictions. If the angular discretization is excessively rough, such as 90o 
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or 60o elements, the results will be incorrect. A mesh refinement that just 

considers the element length size𝑙, on the other hand, has no discernible 

effect on the accuracy of 𝐾𝐼 predictions. 
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