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Abstract 

Map-based localization is a technique for determining precise position and 

orientation of a mobile agent in a known environment. It uses the sensor 

measurements such as visual or range sensor data, with the features and 

landmarks represented on the map. This paper reports map-based 

localization for a vehicle using the generated datasets. Algorithms like 

LiDAR Inertial Odometry via Smoothing and Mapping were used to 

generate the Point Cloud Data while Iterative Closest Point and Normal 

Distributions Transforms localization algorithms were used to perform 

map-based localization. The data sets were collected at 20 to 25 km/h 

vehicle speed, using Velodyne and Ouster LiDARs in a dynamic 

environment and the same was compared at 23s mark to evaluate the IMU, 

mapping, and GPS data. Accuracy of GPS in case of Interactive Closest 

Point was greater. The large step size for Normal Distributions Transform 

was found to be more computationally efficient as it processes more data 

per unit time, making it suitable for use in dynamic environments and 

move-based to map-based localization transition was achieved. 

Keywords: Map-based localization, Point Cloud Data, LIO-SAM, ICP, 

NDT 

1.0 Introduction 

Autonomous vehicles can redefine mobility, improve road safety by 

incorporating advanced artificial intelligence, sensor technology, and 

connectivity. They leverage intricate network of sensors, algorithms, and 

sophisticated control systems to navigate and make decisions 

autonomously. Autonomous vehicles have the ability to perceive their 

environment and respond accordingly. The advancements in map-based 

localization have been driven by breakthroughs in sensor technology, 

particularly in the fields of computer vision and LiDAR. Visual odometry 

algorithms employ cameras to track visual features and estimate the robot's 

motion, while LiDAR-based approaches leverage laser scans to generate 

3D maps and perform localization. The fusion of multiple sensors, such as 

                                                           
*Mail address: Bharatish A, Assistant Professor, Department of Electronics and Communication, 

RV College of Engineering, Bengaluru – 59, Email: rajanikatiyar@rvce.edu.in, Ph: 9036902505 

 

mailto:rajanikatiyar@rvce.edu.in


Souparna Roy et.al., Map-based Localization for Autonomous Vehicles 

RVJSTEAM, 4,2 (2023)                                                                                                                                                     119 

 

cameras and LiDAR, has also shown significant potential in improving 

localization accuracy and robustness.  

Map-based localization is needed for high accuracy and reliability in a 

variety of environments and conditions. This is particularly important in 

safety-critical applications, such as autonomous vehicles. Another 

challenge is the need for real-time performance, as autonomous vehicles 

must be able to process sensor data and update their position estimates 

quickly and efficiently. However, several challenges remain in the field of 

map-based localization. The scalability of map-based localization 

algorithms to large-scale environments is an ongoing area of research. 

Real-time performance, computational efficiency, and the ability to handle 

dynamic environments are critical factors for widespread adoption. Also, 

robustness against changes in lighting conditions, appearance variations, 

and occlusions pose additional challenges in visual-based localization 

approaches. Map-based localization in outdoor environments may also be 

influenced by seasonal changes, environmental deformations, or limited 

GPS availability.  

Map based localization for autonomous vehicles utilizing the LIO-SAM 

(LiDAR Inertial Odometry via Smoothing and Mapping) framework in 

combination with Velodyne and Ouster LiDAR sensors is reported [1-3].  

To build extremely precise and economical maps for autonomous vehicles, 

the LIO-SAM framework includes Simultaneous Localization and 

Mapping (SLAM) methods.  

The use of modern LiDAR sensors, such as Velodyne and Ouster, enables 

accurate and detailed perception of the surroundings. The strengths, limits, 

and applicability of NDT and ICP algorithms are examined [4]. The 

research also explores the implementation of the NDT (Normal 

Distribution transform) and ICP (Iterative closest point) algorithms. The 

NDT technique makes use of a statistical model to characterize the 

surrounding area and calculate the pose of the vehicle, whereas the ICP 

approach iteratively matches the observed point cloud data via the map 

data to improve the localization estimation.  

The LIO-SAM method, developed by Shan et al. [1] reliably locates a 

vehicle in real-time by combining readings from inertial sensors and 

LiDAR odometry. The system performs exact pose estimation and retains 

a small number of keyframes while using the high-resolution 3D point 

cloud data from LiDAR sensors and a sliding window approach for 

simultaneous localization and mapping, assuring accuracy and efficiency.  

By offering an accurate approach for applications like mapping, object 

identification, and autonomous navigation, this method advances the area 
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of map-based localization for autonomous vehicles. Hossain and Lin 

proposed a method called Uncertainty-Aware Tightly-Coupled GPS Fused 

LIO-SLAM [2] for autonomous delivery vehicles operating in areas where 

GPS access is limited or denied. Through the combination of GPS and 

LiDAR inertial odometry in a tightly-coupled manner and the use of an 

Extended Kalman filter for fusion, this method effectively overcomes 

long-range drift issues and produces accurate maps in outdoor as well as 

semi-indoor/indoor environments. The experimental results demonstrated 

its effectiveness by achieving lower RMSE than those of the GPS based 

mapping approaches.   

Wang et al. [3] utilized 3D-LiDAR information to deliver a map-based 

localization approach for autonomous vehicles. The approach precisely 

determines the vehicle's location and orientation relative to the map by 

merging an already constructed map with real-time LiDAR data.  

The ICP technique is used to build a high-resolution map, while SVD is 

used to estimate pose. The usefulness of the approach for attaining exact 

localization in different contexts is demonstrated by empirical results using 

real-time data from autonomous cars.  

Shin et al. [4] discussed a high-definition map localization technique for 

self-driving cars that makes use of advanced driver assistance system 

(ADAS) environment sensors. The technique contains parts for 

representing environment features, digital map analysis, map-based 

position correction, predefined validation gates, and extended EKF-based 

localization filtering and fusion. The system detects lane information with 

monocular vision and the quad rail with radar using numerous feature 

extraction stages.  

Chen et al. [5] presented NDT-LOAM, a real-time LiDAR odometry and 

mapping method that analyses LiDAR point cloud data for simultaneous 

localization and mapping. To improve the speed of computation, the 

framework separates LiDAR SLAM into front-end odometry and back-

end optimization. To eliminate accumulated mistakes, the front end 

employs the Normal Distribution Transform (NDT) for point cloud 

registration. Weighted NDT in combination with Local Feature 

Adjustment, building novel cost functions having weights depending on 

range values and surface features are used to analyse point clouds. NDT-

LOAM beat state-of-the-art algorithms like ALOAM/LOAM on the 

KITTI dataset, displaying superior translation drift (0.899% average) and 

real-time performance (10Hz). The results show that NDT-LOAM is a 

highly precise, low-drift approach for LiDAR-based mapping and 

localization.  
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Liu et al. [6] suggested an NDT-based real-time high-precision positioning 

and mapping method for large scenes. The method solves LiDAR 

registration difficulties by enhancing stability, accuracy, and vehicle 

positioning. It demonstrates excellent durability, enhanced monitoring 

performance, and accurate positioning even in situations of signal fading 

by employing NDT properties and incorporating them into the SLAM 

framework.  

The objective of this research was to achieve map-based localization for a 

vehicle using the generated datasets. Algorithms like LiDAR Inertial 

Odometry via Smoothing and Mapping were used to generate the Point 

Cloud Data while Iterative Closest Point and Normal Distributions 

Transforms localization algorithms were used to perform map-based 

localization. 

2.0 Methodology 

 

 

 

 

 

 

 

 

 

                                                                                              

 

                                                        

                                                            

 

Fig. 1. Methodology for Map-based Localization for Autonomous Vehicles 

 

Fig. 1 shows the methodology adopted for the design and implementation 

of Map-based localisation for autonomous vehicles. The methodology 

involves installation of Robot Operating System (ROS), setting up of ROS 

environment, installation of the drivers for IMU, GPS, and LiDAR and 
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their integration with ROS to provide a platform for running LIO-SAM. 

Once the LIO-SAM has successfully generated the required pcd maps, the 

implementation of map-based localization can be started. Two map-based 

localization algorithms, ICP and NDT Localization, were used and the 

results were compared. The algorithms were tested for public and local 

datasets. The robot’s status and trajectory was calculated using the sensor 

data of 3D LiDAR, IMU, and GPS. This state estimation problem was 

formulated as a map posterior problem.  

A factor graph was used to model the problem. With no loss of generality, 

the system can incorporate measurements from other sensors like heading 

from a compass or altitude from an altimeter. For the purpose of building 

factor graphs, four different kinds of factors and one type of variable were 

introduced. The nodes of the graph are responsible for this variable, which 

captures the state of the robot at a particular moment.  

The four basic factors used are: 

i. IMU Pre-integration Factors: It focuses on finding the relative motion 

between two consecutive timesteps and hence, the pre-integrated time 

measurements Δvij (velocity), Δpij (position), ΔRij (rotation) between 

the time i and j [7]: 

     Δvij = RiT (vj – vi - g Δtij)                                        (1) 

     Δpij = RiT (pj – pi - vi Δtij – 1/2g Δtij2                   (2) 

     ΔRij = RiT Rj                                                           (3) 

ii. LiDAR Odometry Factors: Key-frames were introduced as the 

computation for individual LiDAR frames and adding them to the factor 

graphs is not efficient. In this approach, a LiDAR frame Fi+1 is selected 

as a keyframe when the change in the pose of the robot exceeds a user-

defined threshold when compared to the previous state x.  The new key 

frame, Fi+1, is associated with a new node of the robot, xi+1 in the 

factor graph. The LiDAR frames between these two keyframes are 

discarded. The addition of keyframes in this manner helps to achieve a 

balance between memory consumption and map density while also 

maintaining a relatively sparse factor graph. This is suitable for real-

time nonlinear optimization. The position and rotation thresholds for 

adding a new keyframe are chosen as 1m and 10°. 

iii. GPS Factors: It is used to eliminate drift when performing long-term 

navigation tasks. Sensors that provide absolute measurements to 

eliminate drift can be introduced. These sensors consist of a GPS, 

compass, and altimeter. The GPS readings are first translated into the 
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local Cartesian coordinate system and then a new GPS factor with this 

node is associated when a new node is added to the factor graph. If the 

GPS signal and the LiDAR frame are not hardware synchronized, linear 

interpolation between GPS measurements based on the timestamp of 

the LiDAR frame is performed. Since the drift of LiDAR inertial 

odometry increases relatively slowly, it is not required to continuously 

apply GPS components when GPS reception is available. In actual use, 

only a GPS component is used when the projected position covariance 

exceeds the GPS position covariance that was received. 

iv. Loop Closure Factors: It implements a simple Euclidean distance-based 

loop closure detection method. For the first search of the factor graph, 

the prior states that are close to the new state xi+1 in Euclidean space 

whenever a new state xi+1 is added. The Frames are matched to the 

sub-frames by using scan-matching. The search distances for loop 

closures are set to be 15m from a new state xi+1 and the index m to be 

12. However, in practice when GPS is the only absolute sensor 

available, it is found that adding loop closure factors is very helpful for 

reversing the drift in a robot's height. This is due to the extremely 

unreliable height measurement provided by GPS, which led to altitude 

errors nearing $100m$ in the absence of loop closures. 

ICP [8] algorithm: It is used for global position estimation. In a process 

known as scan registration, a source point cloud is aligned to a set target 

point cloud by determining the best possible translation and rotation to 

reduce the distance between the two. There are other ICP variants, such as 

point-to-plane, to have better convergence than that of the point-to-point.  

Point-to-plane variation of ICP: ICP’s point-to-plane variation is 

frequently more effective than the traditional point-to-point kind at 

determining the ideal transformation. By estimating the surface normals, 

for each of the points of the target cloud, the tangent planes are created. 

The surface normals for each point in O are denoted by nj.  

Sources of error: When implementing ICP, a few causes of error must be 

taken into account. ICP converges incorrectly to a local minimum rather 

than a global minimum. Since ICP does not account for this while 

minimizing the cost function, this frequently turns out to be the dominant 

error. Before using ICP, an initial alignment can be done to get the source 

cloud closer to the global minimum and prevent this problem. Either a 

qualified estimate or a random selection of different initial positions can 

be used to accomplish this. Before each iteration of the ICP algorithm, a 

random Gaussian noise translation is introduced to the source cloud to 

enable the algorithm to relocate from a local minimum. 
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The second source of error is under-constrained circumstances, such as 

those in which there is insufficient data to determine the location and 

orientation of the object in question. Since the ICP is unable to identify the 

exact location of the object, it can be seen that sliding takes place in one 

of the coordinate axes in the various findings.  

The two other concepts necessary for ICP are: 

Iterative Closest Point: The results of the pre-processing step are the 

input data used in the ICP algorithm. In other words, the target point cloud, 

which in this system is similar to an elevation map of the area, and the pre-

processed source point cloud, which was created from the LiDAR sensor 

mounted on the vehicle. A subset of points are retrieved. In this stage, the 

entire cloud population, as well as this subset, is utilized.  

Uncertainty Estimation: Finding the uncertainty of the result produced 

by ICP is the second and final phase of the global position estimate 

procedure, which is accomplished by estimating the covariance. The 

location estimations provided by ICP are weighted by the covariance in 

the EKF (Extended Kalman Filter). The UT-based covariance estimate, 

covariance with correspondences, and covariance with Hessian are the 

three covariance approaches that are put to the test.  

The covariance is estimated in three dimensions because the point clouds 

are three-dimensional, but only the x, y, and θ (rotation around the z-axis) 

elements of the covariance matrix are chosen and put into a three-

dimensional matrix. This is due to the fact that the EKF can only estimate 

2D positions because the local position estimations generated by the 

present FOI system's odometry data are in 2D. After the ICP technique, 

after the source cloud has been aligned to the global coordinate system the 

covariance is computed.  

3.0 NDT Algorithm 

It is used for probabilistic scan matching and registration of point clouds. 

It is commonly employed in map localization, simultaneous localization 

and mapping (SLAM), and object recognition tasks. NDT is known for its 

robustness to noise and outliers, making it suitable for environments with 

sensor uncertainties. 

The NDT algorithm represents point clouds as a probabilistic distribution, 

specifically a Gaussian distribution. The steps involved in the NDT 

algorithm are as follows: 

Voxelization: Voxelization is the process that converts a data structure, 

storing geometric information in a contiguous domain, into a rasterized 
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image. The point clouds are divided into equally sized voxels to create a 

voxel grid representation. Each voxel represents a local region of the 

environment. 

Feature Extraction: Feature Extraction is the process by which an 

algorithm extracts a set of informative and non-redundant data to help the 

learning for the algorithm and generalize the further steps. 

Initially, an estimate of the relative pose between the target point cloud and 

the reference map is obtained using an initial guess, such as odometry data. 

For each voxel in the target point cloud, the closest voxel in the reference 

map is found. Assigning weights to the correspondence is performed based 

on the similarity measure.  

High weights are given to voxels with similar distributions, while low 

weights are assigned to dissimilar voxels or outliers. 

Using the correspondence and their weights, an optimal transformation 

matrix that aligns the two-point clouds is estimated. The estimated 

transformation is applied to the target point cloud, aligning it with the 

reference map. The algorithm checks if the estimated transformation 

matrix has reached the desired accuracy or if the change between iterations 

falls below a specified threshold. If not, the algorithm returns to the final 

transformation matrix and provides the optimal alignment between the 

target point cloud and the reference map, representing the relative pose 

estimation. 

4.0 Results and Discussion 

Fig 2 shows the setup of autonomous vehicle on which the Velodyne and 

Ouster LiDARs.  

 

 

 

 

 

 

 

 

 

Fig. 2. Autonomous vehicle set up with Ouster LiDAR, FLIR Camera and XSens MTi IMU 
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The data pertaining to the sensors were verified. The Linear Acceleration 

data from both LiDARs were compared and found to be agreeing as shown 

in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                        Fig. 3 a) Linear Acceleration data from Velodyne Sensor 

                                   b) Linear Acceleration data from Ouster Sensor 

 

LIO-SAM algorithm was used to map the environment and generate a pcd 

map for the same. It enabled localizing the autonomous vehicle and made 

the self-guided movement possible. The red color shows the area that is 

being mapped with higher intensity while the green color towards the left 

indicates mapping with a lower intensity due to the range constraints of the 

LiDARs. 
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                       Fig. 4. LIO-SAM execution in the environment  

Fig. 5 shows the pcd map generated using LIO-SAM for the environment 

as well as the corresponding google maps image for the place using 

Velodyne LiDAR. Fig. 6 shows the same using the Ouster LiDAR. The 

google maps image clearly shows the environment mapped and the pcd 

files helps visualizing the data points for the same in 3D. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Google maps, pcd map with Velodyne           Fig. 6. Google maps, pcd map with Ouster     

            LiDAR                                                                        LiDAR  

 

The maps shown in Fig. 5 and Fig. 6 were used to perform map-based 

localization\cite{p9}. For the ICP localization, the pcd map was given as 

input to the algorithm. The map gets uploaded to the background and can 

be seen from the grey data points in Fig. 7. The bright green circle in the 

middle of the RGB area indicates the position of the vehicle fitted with the 

LiDAR sensor. The concentric circles around the central position indicate 
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the field of view of LiDAR and its effective range. The changing color 

from green to blue toward the outer edges indicates that the points that are 

furthest away from the LiDAR are being recorded with a lesser intensity. 

 

 

 

 

 

 

 

 

                                Fig. 7. ICP Localization with RVCE Campus Dataset 

The output estimates the vehicle's pose, which provides information about 

its position and orientation relative to the pre-built map. This pose estimate 

is continuously updated as the vehicle moves through the environment, 

allowing it to determine its location accurately. 

Fig. 8 shows NDT localization where the pcd map and its corresponding 

csv file [10] are given as input to the algorithm. The map can be seen as a 

set of white data points in the background. The RGB axis towards the 

bottom indicates the starting position for the vehicle and also the starting 

point for localization. The RGB axis towards the right of the figure 

indicates the current position of the vehicle that is coming back to close 

the loop at the starting point. The RGB points all over the map indicate the 

localization that is happening via the algorithm. 

 

 

 

 

 

 

 

 

Fig. 8. NDT Localization with Dataset 
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The NDT algorithm typically provides a covariance matrix representing 

the uncertainty or confidence associated with the estimated location. This 

covariance matrix describes the level of uncertainty in estimates of 

position and orientation. The results using the environment datasets 

estimate the location of the vehicle, including its position and direction on 

the reference map. 

5.0 Conclusion 

A map-based localization system was developed by using lidar odometry 

and multi-sensor fusion. It was deployed to perform localization in a select 

environment. Frameworks like LIO-SAM were used to provide initial lidar 

inertial odometry, to map and generate pcd maps for the environment. The 

maps were utilized in algorithms like ICP and NDT to perform map-based 

localization. The autonomous vehicle was successfully localized based on 

the data gathered by the sensors in real time and the path data available 

from the 3D map. The method was tested using multiple public datasets 

and the datasets collected in the environment.   

The Velodyne and Ouster LiDARs had a run time of 345.71s and 93.18s 

respectively while collecting datasets. Both the datasets were compared at 

the 23s mark to evaluate the IMU, mapping, and GPS data and ensure 

uniformity of input for both the algorithms. The GPS accuracy in case of 

ICP was greater. For ICP, the units of visualization used were FlatSquares 

with a size of 0.15m and for NDT, the same were FlatSquares with a size 

of 3m. The large step size for NDT showed that it is more computationally 

efficient as it processes more data per unit time. The results showed that 

NDT is better suited to localization in a dynamic environment but ICP is 

better when multiple sensors have to be changed frequently. A 

combination of NDT and ICP helped in creating a functional system and 

transition from move-based to map-based.  
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