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Abstract 

Tungsten carbide holds immense significance in contemporary industries 

such as aerospace, manufacturing, medicine, and cutting tools. Within 

these sectors, precision machining and grinding processes are pivotal and 

often rely on powder metallurgy techniques. However, these procedures 

frequently suffer from prolonged time requirements, increased expenses, 

and elevated rejection rates post-sintering. While previous research has 

made attempts to address these challenges through methodologies such as 

Design of Experiments (DOE), only a handful have taken a holistic 

approach that integrates these techniques with Artificial Neural Networks 

(ANN) to effectively identify root causes. This study aims to mitigate the 

cost and time constraints associated with grinding processes and tackle the 

primary contributors to rejection rates. The experimental framework 

involves comprehensive testing at each grinding stage, incorporating in-

depth analysis of surface roughness, material removal rate and process 

time. Results obtained from multi-objective optimization and analysis of 

variance (ANOVA) indicate that optimal component quality can be 

achieved through a spindle speed of 3000 rpm, a depth of cut of 0.013mm, 

and a feed rate of 1 mm/s resulting in better MRR, process time and surface 

roughness. The predictions generated by the ANN align with simulation 

outcomes and are supported by strong validation performance at the fifth 

epoch. Regression values of 0.99891, 0.99135, and 0.99779 for validation, 

testing, and the overall neural network model, respectively, further 

validate the findings. The close correlation between ANN approximations 

and DOE results highlights the significance of proper grinding wheel 

selection, adherence to standardized parameters, and careful powder 

handling in these processes. 
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1.0 Introduction  

Tungsten carbide has gained considerable interest across various 

applications including aerospace, automotive, and manufacturing due to 

its exceptional properties such as highly resistant to wear and abrasion, 

high compressive strength, resistance to corrosion, and good thermal 

conductivity [1-2]. In numerous scenarios, tungsten carbide components 

undergo precision machining processes which include surface grinding, 

grinding of outer diameter (OD) and inner diameter (ID) [3]. These 

techniques are indispensable for achieving dimensional accuracy, surface 

quality, and geometrical precision required across diverse industries [4]. 

Also, precision grinding of tungsten carbide surfaces, OD, and ID requires 

careful monitoring of parameters such as grinding wheel grade selection, 

spindle speed, feed rate, and depth of cut. The kinematic interaction 

between the workpiece and the grinding wheel with the proper 

combination of these parameters results in the improved surface quality 

and material removal rate [5].  Improving the grinding of carbide tools 

requires a combination of advanced grinding methods, abrasives, and 

grinding fluids. The use of high-speed grinding, low-frequency vibration, 

and abrasive suspensions have all been shown to be effective in improving 

the surface finish of carbide tools. Further research is needed to optimize 

these methods for specific applications and materials to ensure the best 

results [6]. 

The grinding process is a surface finishing method employed to refine 

surfaces by removing a controlled amount of material from pre-machined 

surfaces. Among these methods, cylindrical grinding, which falls under the 

category of abrasive machining, is a widely used technique for precise 

material removal from a workpiece's surface, achieved by interacting with 

abrasive particles of various shapes [7]. 

In ongoing research, the Taguchi method, a form of Design of 

Experiments, has been employed to optimize the parameters inherent to 

cylindrical grinding. These parameters include wheel speed (measured in 

rpm), work speed, feed rate (measured in mm/min.), depth of cut, and the 

application of cutting fluid. The primary focus of this optimization is to 

enhance the Material removal rate, a critical aspect of grinding process 

efficiency [8]. 

N. Alagumurthi et al [9-10] from predicted optimal grinding conditions for 

Al2O3 grinding wheel. The following values: a depth of cut of 0.02mm, a 

work speed of 300rpm, and a wheel speed of 1750rpm. These settings 

resulted in an optimal surface roughness value of 0.46μm. Additionally, 
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the estimated total grinding cycle time, which encompasses coarse cutting 

time, fine cutting time, forward and return movements, load and unload 

times, and setup time, was determined to be 6 minutes and 20 s, with the 

regression R2 value, which assesses the variance explained by the 

variables, exhibited a significant and impressive result, surpassing 90% 

and more precisely, hovering at approximately 91.82%. K. Leo Dev Wins 

et al [11] developed predictive model for the surface roughness of a silicon 

carbide grinding wheel using Artificial Neural Network (ANN) 

methodology. The optimal combinations of speed 1000 rpm, depth of cut 

0.03 mm and feed 0.8mm/s were found to predict a minimum surface 

roughness of 0.58 µm. Numerous studies have investigated the factors 

contributing to grinding wheel wear, forming a substantial body of 

research. Understanding the elements that accelerate wear underscores the 

importance of closely monitoring the grinding wheel's performance during 

processing, as highlighted in reference [12]. 

A review of existing literature [1-12] reveals a significant body of research 

dedicated to optimizing the grinding process. This study primarily focuses 

on reducing grinding time and associated costs while maintaining product 

quality. Simultaneously, it aims to decrease the rate of rejected products 

and explore the factors leading to rejections, along with strategies for their 

mitigation. To achieve these goals, a comprehensive optimization strategy 

is employed, incorporating techniques such as the design of experiments, 

and quality control tools. This study harnesses Artificial Neural Networks 

(ANNs) to enhance optimization efforts, offering a means to analyze 

complex data and patterns to identify optimal parameters and 

configurations for the grinding process. This paper delves into the realm 

of grinding process optimization, drawing from a diverse array of 

methodologies and tools. Its integrative approach seeks not only to 

enhance efficiency and reduce costs but also to address quality concerns 

and rejection rates, ultimately contributing to an improved and streamlined 

grinding process. 

2.0 Experimental Method 

2.1 Experimental Layout for DOE 

Experimental design is a critically important tool in the engineering world 

for improving the performance of manufacturing processes or developing 

trials for new experiments. It also has an extensive application in the 

development of new processes. The application of experimental design 

techniques early in process development can result in, improved process 

yields, reduced variability, closer conformance to nominal or target 
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requirements, reduced overall costs, and reduced development time. 

To conduct this investigation, opted for an L9 array in Minitab's 'Three 

Level Design' feature, allowing us to accommodate three factors, each with 

three variability levels. In this project, Table 1 presents choices for spindle 

speed (ranging from 2200, 2500 and 3000 rpm), depth of cut (varying 

between 0.008, 0.01 and 0.013 mm), and feed rate (set at 0.25, 0.5, and 1.0 

mm/s). These selections represent the three levels of each factor for outer 

diameter grinding. 

Optimizing material removal while minimizing time consumption ideally 

involves spindle speeds in the range of 2200 to 3000 rpm. For micro-

finishing grinding, where precision levels as low as 0.008 mm and up to 

0.013 mm can be achieved, the depth of cut should be within this range. 

Furthermore, it is recommended to adhere to the standard feed rate 

specifications commonly used in the WC grinding process. 

Table 1. Factors and their corresponding variability levels for OD grinding 

 

Table 2 shows the experimental layout obtained through Minitab statistical 

software. The combinations of factors are shown in 1st column and 

responses namely material removal rate, process time, and surface 

roughness are shown in 2nd column respectively. Table 6 refers to the data 

related to 1st and 2nd set of experimental results. This table provides a 

comprehensive understanding of key parameters, including material 

removal rate, processing time, and surface roughness factors, within the 

context of a complete fractional factorial design. It offers valuable insights 

into how these variables interact and influence the overall outcome of the 

experimental setup, facilitating a deeper comprehension of the design's 

performance characteristics. 

The material removal rate (MRR, mm3/s) is given by equation 1 as shown  

 

𝑀𝑅𝑅 =
𝑆(𝑟𝑝𝑚) 𝑋 𝐹 (

𝑚𝑚

𝑠
)𝑋 𝐷𝑂𝐶 (𝑚𝑚)

60
               (1) 

 

Where, MRR – Material removal rate in mm3/s, S – Spindle speed in rpm, 

F– Feed rate in mm/s, DOC– Depth of cut in mm 

Sl. No. Factors Unit 
Levels 

1 2 3 

1 Spindle speed rpm 2200 2500 3000 

2 Depth of cut mm 0.008 0.01 0.013 

3 Feed rate        mm/sec 0.25 0.5 1.0 
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Table 2. Experimental Planning by L9 Orthogonal Array 

3.0 Results and Discussion 

The crucial objective is to mitigate the bottleneck that has been 

significantly impeding the grinding phase, thereby alleviating a substantial 

challenge. 

3.1 Material Removal Rate 

The analysis of variance (ANOVA) presented in Table 3 gives clear trend 

that feed rate stands out as the primary factor influencing material removal 

rate (MRR). This assertion is rooted in the observation that the F-value 

notably surpasses the P-value. The pronounced F-value emphasizes the 

feed rate's substantial impact on MRR, substantiating its significance in 

the process. In contrast, the influence of spindle speed emerges as 

relatively minor. This is further accentuated by the fact that even variations 

in the depth of cut wield a more pronounced effect on MRR than spindle 

speed.  

Fig.1 depicts the main effect plot for material removal rate, which 

highlights that spindle speed has a direct impact on the material removal 

rate in OD grinding. Elevating the spindle speed from 2200 to 3000 rpm 

typically results in an augmented material removal rate from 0.248 to 0.29 

mm3/sec, thereby enhancing overall efficiency and productivity The 

phenomenon was explained by the presence of fine abrasives that came 

into contact with the workpiece at high speeds, resulting in a kinetic action 

that caused rubbing, which, in turn, led to a higher material removal rate. 

Increasing the spindle speed often led to an increase in material removal 

rates, but it was crucial to find a careful balance to preserve the lifespan of 

the cutting tool, attain a desired surface finish, and maintain overall 

machining quality. 

Sl.  

No. 

Spindle 

Speed  

(RPM) 

Depth of 

cut  

(mm) 

Feed rate  

(mm/s) 

MRR  

(mm3/s) 

Process 

time  

(min) 

Surface 

roughness  

(µm) 

1 2200 0.008 0.25 0.07333 16.19 0.8585 

2 2200 0.01 0.5 0.18333 18.11 0.787 

3 2200 0.013 1 0.4767 18.16 0.8403 

4 2500 0.008 0.5 0.16667 16.19 0.8955 

5 2500 0.01 1 0.4167 16.2 0.813 

6 2500 0.013 0.25 0.13542 16.2 0.7945 

7 3000 0.008 1 0.4 15.17 0.7635 

8 3000 0.01 0.25 0.125 15.13 0.7795 

9 3000 0.013 0.5 0.325 15.16 0.7335 
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The depth of cut is intrinsically linked to the material removal rate in OD 

grinding. Increasing the depth of cut from 0.008 to 0. 013 mm generally 

leads to a higher material removal rate from 0.21 to 0.32 mm3/sec, 

increasing efficiency. This phenomenon is attributable to the greater force 

exerted on the workpiece by the grinding wheel, leading to a larger surface 

area coming into contact and thereby increasing the likelihood of achieving 

a higher Material Removal Rate (MRR). This also contributes to achieving 

a superior surface finish. 

Furthermore, the feed rate directly governs the material removal rate in 

OD grinding. Elevating the feed rate from 0.25 to 1.00 mm/s usually yields 

a greater material removal rate of 0.10 to 0.44 mm3/sec. This phenomenon 

occurs when the cutting tool rapidly advances towards the workpiece, 

resulting in a heightened material removal. This outcome was anticipated, 

as the material removal rate naturally rises with an increased feed rate, 

owing to the reduction in machining time. However, this enhancement 

must be pursued with careful consideration to maintain precision, achieve 

the desired surface finish, and curb wheel wear, all within well-defined 

boundaries. [13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Main effect plot for MRR 
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Table 3. Anova table for MRR 

Analysis of Variance  

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 0.175725 0.058575 111.18 0 

  Spindle Speed in 

RPM 
1 0.002708 0.002708 5.14 0.073 

  Depth of cut in mm 1 0.015359 0.015359 29.15 0.003 

  Feed rate in mm/s 1 0.157658 0.157658 299.25 0 

Error 5 0.002634 0.000527   

Total 8 0.178359    

 

The relationship between the outer diameter grinding parameters and the 

responses was modelled using RSM. The general first-order RSM model 

used to predict the influence of grinding parameters on the response factor 

is given by Eq. (2) 

Yi =  β0 +  β1Xi1 +  β2Xi2 +  … … … βqXiq +  Єi(i =  1,2 ⋯ N)   (2) 

 

where Yi is the response factor and Xij are the values of ith observation and 

jth level of the grinding parameters. The terms βi are the regression 

coefficients. For the modelling, the higher-order linear effects are 

considered and the interactive effects are not considered. The residual Є is 

a measure of the experimental error. The response surface represents the 

material removal rate, process time, and surface roughness (MRR, PT, SR) 

as a function of outer diameter grinding parameters such as spindle speed 

(SS), depth of cut (DOC), and feed rate (FR) an be represented by Eq. (3) 

GR =  β0 + β1(SS) + β2(DOC) + β3(FR)              (3) 

 

Based on the experimental results of outer diameter grinding, the 

mathematical relationship established for correlating material removal rate 

(MRR) and the grinding parameters is presented as Eq. (4) 

 

𝑀𝑅𝑅 =  −0.3345 +  0.000053 𝑆𝑆 +  20.10 𝐷𝑂𝐶 +  0.4245 𝐹𝑅      (4) 

 

R2 value for model 98.52% 
 

3.2 Process time 
 

The analysis of variance (ANOVA) in Table 5 illustrates a distinct pattern 
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indicating that spindle speed has a more significant influence. Increasing 

the spindle speed holds the potential for substantial improvements in 

process time, while the impacts of feed rate and depth of cut are relatively 

less significant when compared to spindle speed. 

Fig 2 depicts the main effect plot for process time, demonstrates the typical 

direct correlation between spindle speed and process time in OD grinding. 

Increased spindle speeds from 2200 to 3000 rpm often lead to reduced 

process times from 18.1 to 15.2 min due to heightened material removal 

rates. This phenomenon can be described as follows: as the spindle speed 

increases, the removal of material accelerates because the sharp abrasive 

particles make high-speed contact with the workpiece, resulting in a higher 

Material Removal Rate (MRR). However, achieving a reduction in process 

time necessitates a balanced approach that carefully considers factors such 

as speed, tool durability, surface quality, and overall machining quality. 

The depth of cut exhibits an inverse relationship with process time in OD 

grinding. Elevating the depth of cut from 0.008 to 0.013 mm holds the 

potential to slight increase in process time from 16.49 to 16.53 min by 

amplifying the material removal rate. This phenomenon could be linked to 

the precise point of contact between abrasive particles and the component, 

with the increased volume being a significant factor. In such situations, the 

spindle's speed takes on a primary role in the effort to decrease the 

processing time. 

Likewise, the feed rate directly influences process time in OD grinding. 

Swifter feed rates from 0.25 to 1.00 mm/s generally yield slight larger 

process time of 16.49 to 16.5 min due to elevated material removal rates. 

The feed rate in the outer grinding process directly impacts process time. 

A higher feed rate reduces process time as it moves the workpiece more 

rapidly past the grinding wheel, while a lower feed rate extends process 

time as it slows down the workpiece advancement, affecting the overall 

efficiency of the grinding operation [14]. 
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Fig 2. Main effect plot for process time 

 
Table 4. Anova table for process time 

 

RSM model developed for process time. Based on the experimental results 

of outer diameter grinding, the mathematical relationship established for 

correlating process time (PT) and the grinding parameters is presented as 

Eq. (5)         

𝑃𝑇 =  25.33 −  0.003509 𝑆𝑆 +  10.5 𝐷𝑂𝐶 +  0.083 𝐹𝑅      (5) 

R2 value for model 90.74% 

Analysis of 

Variance 
 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 12.0783 4.0261 16.32 0.005 

  Spindle Speed 

in RPM 
1 12.0681 12.0681 48.93 0.001 

  Depth of cut in 

mm 
1 0.0042 0.0042 0.02 0.901 

  Feed rate in 

mm/s 
1 0.006 0.006 0.02 0.882 

Error 5 1.2333 0.2467   

Total 8 13.3116    
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3.3 Surface roughness 

The analysis of variance (ANOVA) in Table 6 underscore the crucial role 

that spindle speed plays in achieving the specified surface finish standards, 

which require maintaining a surface finish within the defined range of 1.68 

µm. As spindle speed increases, there is a noticeable improvement in 

surface roughness, bringing it into closer alignment with the targeted 

standards. In contrast, the impact of depth of cut and feed rate on surface 

finish appears relatively subtle as demonstrated.  

Fig 3 depicts the main effect plot for surface roughness. Elevated spindle 

speeds from 2200 to 3000 rpm typically result in smoother surface finish 

of 0.829 to 0.757 µm due to heightened abrasive action and improved rates 

of material removal. This phenomenon can be attributed to the use of a fine 

abrasive wheel, which, when in contact with the workpiece at higher 

speeds, maximizes material removal rates while simultaneously achieving 

a finer surface finish. 

The depth of cut increases from 0.008 to 0.013 mm is intricately linked to 

pivotal factors such as surface quality reduced from 0.84 to 0.79 µm, 

material removal rate, and precision. Deliberating upon considerations like 

the intended surface finish, workpiece composition, grinding wheel 

attributes, and other relevant elements becomes pivotal when determining 

the most suitable depth of cut. This approach ensures the achievement of 

optimal grinding outcomes without compromising the quality of the 

workpiece.[15] 

Furthermore, the feed rate increases from 0.25 to 1.00 mm in OD grinding 

bears a direct impact on crucial aspects such as surface quality from 0.815 

to 0.809 µm, material removal rate, and precision. This phenomenon due 

to more aggressive material removal and coarser abrasive actions 

involved. While higher feed rates can enhance productivity in certain 

situations, it's essential to maintain a careful balance with other factors to 

avoid compromising the desired surface finish and overall workpiece 

quality. It's important to note that the maximum allowable roughness as 

per the standard is 1.65µm. 
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Fig. 3. Main effect plot for surface roughness 

 

 

Table 5. Anova table for surface roughness 

 

Analysis of 

Variance 
 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 3 0.011896 0.003965 2.38 0.186 
  Spindle Speed  

in RPM 
1 0.00861 0.00861 5.16 0.072 

  Depth of cut  

in mm 
1 0.003257 0.003257 1.95 0.221 

  Feed rate  

in mm/s 
1 0.00003 0.00003 0.02 0.898 

Error 5 0.008342 0.001668   

Total 8 0.020238    
 

RSM model developed for surface roughness. Based on the experimental 

results of outer diameter grinding, the mathematical relationship 

established for correlating surface roughness (SR) and the grinding 

parameters is presented as Eq. (6) 

𝑆𝑅 =  1.147 −  0.000094 𝑆𝑆 −  9.26 𝐷𝑂𝐶 −  0.0059 𝐹𝑅     (6) 

R2 value for model 83.26% 

 



Suraj S. Kumar et.al., Optimization of the Tungsten Carbide OD gGrinding Process by Design of Experiment 

and Artificial Neural Network Approach 
 

RVJSTEAM, 4,2 (2023)                                                                                                                                                        73 

  
 

3.4 ANN (Artificial Neuron Networks) 

The effectiveness of an ANN model hinges on the precise selection of 

input-output process parameters, pivotal for achieving efficient forecasting 

or interpolation capabilities. The essence of learning and pattern 

recognition revolves around training the neural network to execute specific 

functions by finely adjusting inter-element weight values [16]. Neural 

networks are often fine-tuned, or trained, to map specific input data to 

desired target output results. The schematic depiction of a typical neural 

network architecture can be observed. These models incorporate a 

hyperbolic tangent sigmoid function within the hidden layer and a linear 

activation function within the output layer realize their construction [17]. 

Fig 4 illustrates an artificial neural network model with three input 

parameters: spindle speed, depth of cut, and feed rate. This model 

comprises three hidden layers and is trained on 70% of the data for MRR, 

process time, and surface roughness, with the remaining 15% each 

allocated for validation and test data.  

Fig. 4. Neural network with three input nodes and output nodes 

In this investigation, the Levenberg-Marquardt algorithm is chosen for 

training the network, and the final network model is chosen based on 

attaining the lowest MSE value. In Fig.5, the evolution of mean square 

error (MSE) across the network's iterations is presented, covering training, 

testing, and validation phases. It's worth highlighting that the graph reveals 

an optimal point with minimal validation performance, which corresponds 

to epoch 2 and signifies a pivotal moment. Following this juncture, the 
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training process continued for an additional 6 iterations before concluding, 

echoing the pattern observed in OD grinding. 

          Fig. 5. Variation of MSE with number of iterations for OD grinding 

Fig. 6 showcases the regression plot that spans the training, validation, and 

testing phases. This visual effectively captures the dynamic interaction 

between the network's output and the desired target values Remarkably, an 

R-value surpassing 0.9 signifies a noteworthy alignment between 

projected values and actual values of MRR, process time, and surface 

roughness values. Regression analysis reveals a significant correlation 

coefficient (R) of 0.999 for training, 0.989 for validation, and 0.994 for 

testing in the context of outer diameter grinding. This analysis culminates 

in an overall R-value of 0.995.  

  



Suraj S. Kumar et.al., Optimization of the Tungsten Carbide OD gGrinding Process by Design of Experiment 

and Artificial Neural Network Approach 
 

RVJSTEAM, 4,2 (2023)                                                                                                                                                        75 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6. Regression plot for training, validation, and testing for outer diameter grinding 

The comparison between the experimental data and predictions generated 

by the Artificial Neural Network (ANN) has yielded a high level of 

satisfaction, indicating the effectiveness of the ANN model. This 

validation is further emphasized through the updated graphical 

representation in Fig.7-9, providing a comprehensive visualization of the 

comparison between the two datasets. These figures encompass critical 

output responses, including material removal rate, surface roughness, and 

process time, offering a holistic view of how well the ANN predicts these 

parameters based on the experimental inputs. This graphical analysis 

deepens our comprehension of the model's accuracy and its ability to 

capture complex relationships within the data. The alignment observed 

between the experimental results and the values predicted by the ANN 

underscores the ANN's potential as a valuable tool for optimizing and 

predicting these key output responses within the given process. The 

ensuing presentation encapsulates the experimental results, ANN 

predictions, and the disparities between the experimental data and ANN 

forecasts, meticulously catalogued in  Table 6.
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Table 6. Comparison of data between experimental v/s ANN predicted with error percentage

Sl  

No 

Spindle 

Speed 

(RPM) 

Depth 

of cut  

(mm) 

Feed 

rate  

(mm/s) 

MRR 

(mm3/sec) 

Experiment 

MRR 

ANN 

Predicted 

MRR 

Error 

(%) 

Process 

time (min) 

Experiment 

Process 

time ANN 

Predicted 

Process 

time Error 

(%) 

Surface 

roughness  

µm 

Experiment 

Surface 

roughness 

ANN 

Predicted 

Surface 

roughness 

Error (%) 

1 2200 0.008 0.25 0.07333 0.0745 1.60 16.19 17.48 2.89 0.8585 0.8456 1.50 

2 2200 0.01 0.5 0.18333 0.18563 1.25 18.11 18.05 0.33 0.787 0.774 1.65 

3 2200 0.013 1 0.4767 0.4815 1.01 18.16 18.06 0.55 0.8403 0.8312 1.09 

4 2500 0.008 0.5 0.16667 0.1678 0.68 16.19 16.04 0.93 0.8955 0.8869 0.96 

5 2500 0.01 1 0.4167 0.4236 1.66 16.2 16.11 0.56 0.813 0.81 0.37 

6 2500 0.013 0.25 0.13542 0.1369 1.09 16.2 15.98 1.36 0.7945 0.7823 1.54 

7 3000 0.008 1 0.4 0.412 3.00 15.17 15.01 1.05 0.7635 0.7512 1.61 

8 3000 0.01 0.25 0.125 0.129 3.20 15.13 15.03 0.66 0.7795 0.7618 2.27 

9 3000 0.013 0.5 0.325 0.331 1.85 15.16 15.1 0.40 0.7335 0.72369 1.34 
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Fig. 7. Graphical representation of experiment and predicted MRR 

 

  

Fig. 8. Graphical representation of experiment and predicted Process time 

 

 

Fig. 9. Graphical representation of experiment and predicted surface roughness 
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4.0 Conclusion  

This paper presents a comprehensive exploration of cost-effectiveness and 

time optimization in OD grinding through the application of Design of 

Experiments (DOE). DOE played a crucial role in optimizing OD grinding 

by manipulating spindle speed, depth of cut, and feed rate. These variables 

directly impact Material Removal Rate (MRR), process duration, and 

surface roughness. Using Taguchi L9 array fractional factorial design, 

optimal parameters were determined: spindle speed at 3000 rpm, depth of 

cut at 0.013 mm, and feed rate at 1 mm/sec, resulting in improved MRR 

(0.47 mm³/s), reduced process time (15 min 13 sec), and enhanced surface 

finish (0.73µm). ANOVA confirmed regression up to an R² of 92.23%. 

Artificial neural network (ANN) models exhibited strong alignment with 

the data, indicated by high correlation coefficients (close to unity) for 

training (0.99993), validation (0.98907), and testing (0.99414) in outer 

diameter grinding. The overall R-value of 0.9959 underscores the 

significant effectiveness of employing DOE methodologies to enhance 

cost-effectiveness and time efficiency in these processes 
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